Inverse Size Scaling of the Nucleolus by a Concentration-Dependent Phase Transition
نویسندگان
چکیده
Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control.
منابع مشابه
RNA transcription modulates phase transition-driven nuclear body assembly.
Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleopl...
متن کاملModification of Polyaniline/Polystyrene and Polyaniline/Metal Oxide Structure by Surfactant
Polyaniline/polystyrene (PAni/PS) composites were prepared in aqueous solution by polymerization of styrene and aniline in two-stages. Firstly styrene polymerize by using Ammonium persulfate (APS) as an oxidant in the presence of various surfactants such as poly(vinyl pyrrolidone) (PVP), hydroxypropylcellulose (HPC), poly(vinyl alcohol) (PVA) and surfactive dopant sodium dodecylbenzenesulfonate...
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملبررسی رفتار برش وشکسانی در سیال تعلیقی کلوییدی سیلیکا
We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol) under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, ...
متن کاملSynthesis and Investigation the Catalytic Behavior of Cr2O3 Nanoparticles
The use of an inorganic phase in water-in-oil (w/o) microemulsion has recently received considerable attention for preparing metal oxide nanoparticles. This is a technique, which allows preparation of ultrafine metal oxide nanoparticles within the size range 40 to 80 nm. Preparation of nano chromium (III) oxide studied investigated in the inverse microemulsion system. Therefore the nucleation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 25 شماره
صفحات -
تاریخ انتشار 2015